Dr. PANJABRAO DESHMUKH KRISHI VIDYAPEETH, AKOLA

SEMESTER END THEORY EXAMINATION

B.Sc. (Hons.) Horticulture

Time

Semester

I (New)

Term Title

Acad. Year

2021-2022

Course No. Credit

H/ BOT-112

Day and Date : Friday 12/11/2021

: 3 (2+1)

Principles of Genetics and Cyto-genetics

4.00-6.00 Total Marks

Note: 1) Solve ANY EIGHT question from SECTION-A

- 2) Solve ANY TWELVE question from SECTION-B
- 3) All questions from SECTION-C arecompulsory
- 4) Send the PDF file of answer sheet to the email id of respective courseteacher

SECTION-A

(Write the answer in 4-5 sentences only. Each question carries 04 Marks)

- Give classification of chromosomes based on centromere position
- Q.2 Define mutation. Give the classification based on survival of treated organism.
- Q.3 What is gene interaction? Enlist types of gene interactions with phenotypicratios
- 0.4 State the salient features of quantitative traits
- Q.5 Define Cell. Give the functions of important plant cell organelles
- Q.6Differentiate between DNA and RNA
- Q.7 Give the characteristics of Genetic Code
- Q.8Define multiplealleles. Give its characteristics with examples
- Q.9 Define Linkage. Explain various phases of linkage
- Q.10 State Law of segregation and give its illustration in short

SECTION-B

(Write the answer sin ones entence only. Each question carries 2 marks) Q. 11 Do as directed

- Give the stages of mitosis. a)
- b) Define Emasculation.
- c) Who proposed the classical model of Lac operon.
- d) Definecrossingover
- e) Blood group is an example of
- f) Enlistanyfourphysicalmutagens
- g) Define Synapsis.
- h) One gene-one enzyme hypothesis was given by
- i) What are different types of RiboNucleic Acid?
- j) Whatdoyoumeanbyheterozygouscondition?
- Name the scientists who rediscovered the Mendel's work k)
- 1) Whatdo you mean by transcription?
- Which are non sensecodons? m)
- What is difference between testcross and backcross? n)

SECTION-C (Choose the correct option. Each question carry 1 mark)

	(Character to the in				
	D. bybrid F ₂ phenotypic ratio is	b)	15:1		
Q. 12	1) Typical Di-hybrid F ₂ phenotypic ratio is	d)	1:1		
	a) 9:3:3:1	۵,			
	c) 1:2:1				
	2) are sites for large numbers of genes.	b)	Chromosome		
	2) are sites for large number		All of these		
	a) Mitochondria	d)			
	c) Nucleus				
	3) Duplicate gene action exhibitF ₂ phenotypic ratio b) 15:1				
	3) Duplicate gene action extraor	b)	13:1		
	a) 12:3:1	d)	13:3		
	0.6:1		1		
	4) Crossing over occurs during stage during meiotic prophase b) Zygotene				
	4) Crossing over occurs duringstage	b)	Zygotene		
	a) Diplotene	d)	Pachytene		
	c) Liptotene	/			
		mutagen.			
	5) UV radiation is an example of	b)	Biochemical		
	a) Chemical	d)	Biological		
	1	u)	Bloisg		
	6) Who discovered jumping genes in maize	1)	W. Bateson		
		b)	R. Brown		
		d)	R. Blown		
	7) A single gene controlling the phynotypic ex	pression 1	s known as		
	a) Sex linked gene		Co-dominant gene		
	1 give gane	d)	Pleiotropic gene		
	c) Autosomal recessive gene				
	8) Genes which exhibit higher mutation rate than others are termed as b) Mutator genes				
	8) Genes which exhibit higher materials	b)	Mutator genes		
	a) Mutable genes	d)	None of these		
	c) Anti-mutator genes	/			
	9) Qualitative traits are	b)	Governed by major genes		
	a) Highly affected by environment	d)	None of these		
	c) Exhibits continuous inheritance	u)	None of these		
	10) The frequency with which a gene produces a phenotypic or visible effect is				
	called _				
	a) Penetrance	b)	Segregation		
		d)	Gene interaction		
	c) Expressivity				
	11) Germplasm theory is put forward by				
		b)	Lamarck		
		d)	G. Mendel		
	c) A. Weismann	u)	G. McHael		
	1 1 1				
	12) A complex ribosomes attached to a single strand of m-RNA is known as_				
	a) Polypeptide	b)	Okazaki fragment		
	c) Polysome	d)	Lysosome		

13)	coined the term Chromosome		6.14.11
a)	C. Benda	b)	G. Mendel
c)	Hugo de Vries	d)	W. Waldeyer
14)	is exchange of segments between two non-l	omol	ogous chromosomes.
a)	Deletion	b)	Insertion
c)	Translocation	d)	Duplication
15)	In plants Meiosis takes place in		
a)	Stems tips	b)	Anthers
c)	Root tips	d)	All of these
16) 1	Nucleus was first discovered by		
a)	Robert brown	b)	Flemming
c)	Robert Hooke	d)	Crick
17)	According to Double Helix Model, DNA consi	sts of	polynucleotide chains.
a)	Two	b)	Three
c)	Four	d)	None of these
a)	Mendel discovered the law of inheritance worki Maize Drossophilla	b)	th which crop? Garden Pea Barley
c)	Diossophila	d)	Daricy
	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross		
19) a) c)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross	otypes b) d)	and two phenotypes Incomplete dominance Co-dominance
19) a) c)	In Mendelian inheritance, can produce two gend Monohybrid cross	otypes b) d) accep	and two phenotypes Incomplete dominance Co-dominance
19) a) c)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally	otypes b) d)	and two phenotypes Incomplete dominance Co-dominance
19) a) c) 20) a) c)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative	otypes b) d) accep b)	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive
19) a) c) 20) a) c) 21)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative	b) d) accep b) d)	and two phenotypes Incomplete dominance Co-dominance ted? Dispersive All of these
19) a) c) 20) a) c)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics'	otypes b) d) accep b)	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa
19) a) c) 20) a) c) 21) a) c) 22)]	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by	b) d) accept b) d) b) d)	and two phenotypes Incomplete dominance Co-dominance ted? Dispersive All of these Mirabilis jalapa Drosophila
19) a) c) 20) a) c) 21) a) c) 22) 1 a)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by 75 %	b) d) accept b) d) b) d)	and two phenotypes Incomplete dominance Co-dominance ted? Dispersive All of these Mirabilis jalapa Drosophila
19) a) c) 20) a) c) 21) a) c) 22)]	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by	b) accept b) d) b) d) cross	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa Drosophila sing two F ₁ s will be
19) a) c) 20) a) c) 21) a) c) 22) 1 a) c) 23) I	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by 75 % 25 % During reproduction, segregation of genes occur	b) accept b) d) b) d) cross b) d)	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa Drosophila sing two F ₁ s will be 100 % 50%
19) a) c) 20) a) c) 21) a) c) 22) 1 a) c) 23) I a)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by 75 % 25 % During reproduction, segregation of genes occur Metaphase – I	b) accept b) d) b) d) cross b) d)	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa Drosophila sing two F ₁ s will be 100 % 50%
19) a) c) 20) a) c) 21) a) c) 22) 1 a) c) 23) I	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by 75 % 25 % During reproduction, segregation of genes occur	b) d) b) d) cros b) d) rs dur	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa Drosophila sing two F ₁ s will be 100 % 50%
19) a) c) 20) a) c) 21) a) c) 22) 1 a) c) 23) I a) c) 24) I	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by 75 % 25 % During reproduction, segregation of genes occur Metaphase — I Metaphase — II nhibitory gene interaction exhibit phenotypic residues.	b) d) accept b) d) b) d) cross b) d) rs dur b) d)	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa Drosophila sing two F ₁ s will be 100 % 50% ring Anaphase – I
19) a) c) 20) a) c) 21) a) c) 22) 1 a) c) 23) I a) c)	In Mendelian inheritance, can produce two gend Monohybrid cross Di-hybrid cross Which mode of DNA replication is universally Conservative Semi-Conservative is termed as 'Cinderella of Genetics' Pea Mutation Percentage of recessives in progeny obtained by 75 % 25 % During reproduction, segregation of genes occur Metaphase – I Metaphase – II	b) d) accept b) d) b) d) cross b) d) rs dur b) d)	and two phenotypes Incomplete dominance Co-dominance sted? Dispersive All of these Mirabilis jalapa Drosophila sing two F ₁ s will be 100 % 50% ring Anaphase – I