MAHARASHTRA AGRICULTURAL UNIVERSITIES EXAMINATION BOARD, PUNE SEMESTER END THEORY EXAMINATION

B.Sc.(Hons.) Horticulture

Semester	: IV (New)	Term	: Second Academic Year : 2023-24
Course No.	: H/VS 244	Title	: Precision Farming and Protected
Credits	: 3 (2+1)		Cultivation
Day & Date	: Fridny, 03.05.2024	Time	: 9:00 to 12:00 hrs. Total marks : 80
Note:	1. Solve ANY EIGHT questi	ons from	SECTION 'A'.
	2. All questions from SECTION	ON 'B' a	ire compulsory.
	3. All questions carry equal m		
	4. Draw neat diagram wherev	er necess	ary.

SECTION 'A'

- Q.1 What is Precision Farming? Write in detail its importance and scope.
- Q.2 Explain in brief cultivation of Tomato under greenhouse on the following points:
 - a) Types of cultivar
- b) Bed preparation

c) Fertigation

- d) Harvesting and Yield
- Q.3 What is the importance and scope of Greenhouse technology? Enlist different types of greenhouses.
- Q.4 How are various techniques and applications being applied in precision farming for crop protection? Explain in detail SSNM.
- Q.5 Write short notes on (Any Two):
 - a) Laser leveling
 - b) Soil mapping
 - c) Characteristics of growing media
- Q.6 What is Shadenet house cultivation? Explain its uses and advantages over traditional greenhouse.
- Q.7 Write in detail cultivation of Cucumber under naturally ventilated polyhouse on the following points:
 - a) Varieties

b) Training and Pruning

c) Mulching

- d) Yield
- Q.8 Enlist cooling system of greenhouse and explain in detail fan and pad cooling system.
- Q.9 Write in detail constraints in adoption of Polyhouse technology.
- Q.10 What is Nutrient Film Technique? Explain in detail its advantages.

(P.T.O.)

SECTION 'B

Q.11 State True of Palse:

- WeedCast software predicts the time of emergence of weeds and speed of their growth after emergence.
- 2) Yield maps represent the output of crop production.
- The shadenet is always placed at the base of greenhouse to reduce light.
- 4) Sand filters are used to remove all inorganic material suspended in irrigation water.
- Continuous irrigation to soil through drip or mist irrigation or water spray inside the polyhouse has also led to poor drainage conditions.
- 6) GIS is an important component of precision farming.
- 7) NFT can be used successfully in soil media.
- Global Positioning System is a referencing device capable of identifying sites within a field.

Q.	12	Fill	in	the	b	an	ks:
----	----	------	----	-----	---	----	-----

1)	Light intensity in the greenhouse is measured with the help of
2)	is the practice of growing plants in an air or mist environment without
	the use of any substrate.
3)	involves locating, identifying and grouping the different kinds of soil.
	is the loss of water-soluble plant nutrients from the soil, due to rain and
	irrigation.
5)	is the killing of all living organisms from growing media.
6)	The science of making inferences about an object from distant measurements
	without physical contact is known as
7)	The slope along the gutter on the polyhouse should not be more than
8)	energy is used in greenhouse drying.
	* * * * * * * *